

UNLOCKING THE PRODUCTION POTENTIALS OF SOME ANNUAL OILSEED CROPS IN NIGERIA

Professor Victor Idowu Olugbemiga Olowe MSc. (Krasnodar), PhD (Ife) Professor of Crop Production

63rd Inaugural Lecture delivered at the Ceremonial Building, Federal University of Agriculture, Abeokuta, Nigeria on May 26, 2021

PROTOCOLS

- The Vice Chancellor;
- Deputy Vice Chancellor (Academic);
- Deputy Vice Chancellor (Development);
- The Registrar;
- The Bursar;
- University Librarian;
- Dean, College of Plant Science and Crop Production (COLPLANT);
- Deans of other Colleges;
- Director, Institute of Food Security, Environmental Resources and Agricultural Research (IFSERAR);
- Directors of Centres and Services;
- Head, Department of Plant Physiology and Crop Production (PPCP);
- Heads of other Departments;
- Distinguished members of the University Senate;
- Distinguished Academic and Professional Colleagues in FUNAAB and from other Tertiary Institutions;
- Members of my immediate and extended families;
- Distinguished Ladies and Gentlemen;
- Gentlemen and Ladies of the Press;
- Great FUNAABITES!!!

PREAMBLES

63rd Inaugural Lecture of FUNAAB Inaugural lecture Series

>12th Inaugural Lecture from COLPLANT

Third Inaugural Lecture from PPCP Department

First Inaugural Lecture from IFSERAR

OF FOOD SECURITY, ENVIRONMENT

The title of this Inaugural Lecture is

UNLOCKING THE PRODUCTION POTENTIALS OF SOME ANNUAL OILSEED CROPS IN NIGERIA

INTRODUCTION

- Nigeria is in west Africa
- Total area of 923,768 km². It shares borders with Benin, Niger, Chad, Cameroon and a coastline.
- Nigeria occupies 91M ha out of which 40M (45%) ha are used for cropland.
- Nigeria has two of the largest rivers in Africa (Rivers Niger and Benue).
- <1% of land is under irrigation in Nigeria.
- Population of > 193 million people.

OIL SEEDS

Oilseeds – crops that bear oil in their seeds.

Examples of oilseeds in Nigeria are:

- Cashew (Anacardium ocidentale L.)
- Oil palm (Elaeis guineensis L.)
- Cottonseed (Gosyppium spp L.)
- Groundnut (Arachis hypogea L.)
- Sunflower (Helianthus annuss L.)
- Sesame seeds (Sesamum indicum L.)
- Soybeans (Glycine max (L.) Merrill)
- Maize (Zea mays L.)
- Castor seed (*Ricinus cumunis* L.) among others

EDIBLE VEGETABLE OIL

- National Consumption Requirement (NCR) of edible vegetable oil is about 3 million tonnes per annum.
- Shortfall of >600,000 tonnes met by importation
- Palm oil/palm kernel oil and soybean oil contribute approximately 70 % and 25 % of the country's NCR, respectively.
- The remaining 5 % is met by other oilseeds.

- According to the CBN Report, \$500 million was spent on palm oil importation annually (Adesoji, 2019).
- In 2017, Nigeria spent a total of \$1.46 billion on the importation of 11 vegetable oils with palm oil, soybeans and sunflower occupying the first three positions in terms of cost of import

Oil product importation (tonnes) in 2017

MY CONTRIBUTIONS TO OILSEED PRODUCTION RESEARCH

THREE CROPS OF FOCUS IN THIS LECTURE

SOYBEANS

(Glycine max (L.) Merrill)

SESAME (*Sesamum indicum* L.)

SUNFLOWER (Helianthus annuus L.)

Minor oilseed/Orphan crops????

- Sesame (Sesamum indicum L.) (beniseed) is an oilseed crop with the appellation "Queen of oilseeds" because of its high quality oil (50-60% oil and 19-25% protein).
- Known as "Ridi" in the north "Eso" by the Nupes "Ishwa" by the Tivs "Igogo" by the Igalas "Ocha" by the Idomas "Isasa" by the Idomas "Ekuku" by the Yorubas

Pioneer research efforts to improve the very low yield of sesame (300 kg/ha) commenced in 1964 at IAR, Zaria.

- Current yield is 1,062.5 kg/ha (FAOSTAT, 2019)
- Today, Nigeria is the 2nd largest producer in Africa after Tanzania and 4th after Myanmar, India and Tanzania in the world.

Nigeria's top 10 agricultural products in half year 2019 (N'Million)

- Soybean seed contains 15-25% oil and 40-50% protein.
- Soybeans have historically been called 'Golden Bean',
- 'Chinese Pea',
- 'Cinderalla Crop',
- 'Meat of the field',
- 'Cow of China',
- 'Miracle Crop',
- 'Protein Hope of the Future',
- 'Life Giver',
- 'Meat without Bones' because of its colour and high protein content.

SUNFLOWER

Sunflower is grown mainly for its seed that contains oil (36–52%) and protein (28–32%).

Sunflower seed is rich in Vitamin E that has anti-inflammatory and cardiovascular benefits.

The seed also contains magnesium responsible for calming nerves, muscles and blood vessels. Sunflower oil is used in industry for making paints and cosmetics.

NUTITUTE OF FOOD SECURITY, ENVIRONMENTAL RESOURCES AND AGROCULTURAL RESEARCH

VEGETATION BELTS IN NIGERIA

NIGERIA VEGETATION

Map Showing Major and Potential Producers of Sesame Seed in Nigeria Indicating the suitable states for seed multiplication and processing machine

HYDROTHERMAL CONDITIONS IN FUNAAB BETWEEN 2000 AND 2019

- Nigerian agriculture is presently performing below its potential because it is mainly dependent on rain-fed cultivation.
- Only 1% of Nigeria's cropland are irrigated (Liangzhi et al., 2018).
- Rainfall is the most critical growth factor in Nigerian agriculture.
- Traditionally, the months of July and September are the two wettest months of the year (2001, 2007 and 2018).
- Sesame (500-650 mm), soybean and sunflower (500-750 mm) according to Weiss (2000).

 In a study conducted between 2001 and 2008, it was concluded that despite the global increase in climatic variability a good yield of sunflower is still possible in the humid tropical region (Olowe et al., 2014).

HYDROTHERMAL CONDITIONS IN FUNAAB BETWEEN 2000 AND 2019

The total rainfall values ranged between 641.7mm (2015) and 1212.4 mm (2010) as against 833.4mm for the LTM during the late cropping season.

Fig. 1: Moving monthly rainfall distribution during the late cropping seasons of 2000 to 2019 and long term average (1985-2019)

SESAME PRODUCTION RESEARCH

- The first major challenge was getting the optimum output from a unit land area.
- Igbirra method (planting on widely spaced large ridges) and the Tiv method (seed broadcast on flat land or low and fairly wide ridges)
- > Appropriate fertilizer regime to boost production.
- > Optimum sowing date across agro-ecological zones.
- Appropriate threshing regime to reduce yield loss (5-10% Field Loss).
- Lack of adequate mechanized farming techniques.
- Very limited functional seed processing plants (three in the country).
- Integration of sesame into existing farming systems.
- Predominantly degraded soils with poor fertility status.
- Pests and diseases attack (20-25% Yield loss due to ALS and CLS).
- Limited number of National Research Institutes working on sesame

Table 1: Summary of research findings on sesame experiments

	CONTRIBUTIONS	REFERENCE
	Row spacing of 60 x 5-10 cm	Olowe and Busari, 1994
	This recommendation had since been adopted by sesame	
	farmers in Niger State, Nigeria.	
	A combination of 60 kgN/ha and 30 kg P applied after first	Olowe and Busari, 2000
	weeding at three weeks after sowing (WAS) was adequate for	
	optimum productivity of sesame in the southern guinea	
	savannah region.	
	Significant yield loss was recorded when up to 66% and 99% of	Olowe et al., 2004
	leaves were defoliated on sesame plant	
	Optimum sowing date within the forest-savanna transition zone	Olowe, 2007
	is early – mid July	
	Evaluation of seven sesame varieties revealed that their oil	Olowe and Adeniregun, 2010
	content (45-50%) and 1000 seed weight (2.5-3.4g) were within	
	the international standards for premium price	
KONMENTAL	Harvesting sesame plants at physiological maturity, staking to	Olowe and Adeniregun, 2011
RESEARCH	dry and threshing at 3 and 4 weeks after harvest	18

Table 2: Mean seed yield, 1000 seed weight, oil content and harvest index of seven sesame varieties, 2006

Variety	1000 Seed Weight (g)	Harvest index (%)	Oil content (%)	Seed yield (t/ha)
F-8	3.4	20.7	50.0	0 77
PBTil	3.0	25.2	45.0	1.05
NCRIBEN-01M	3.3	26.4	45.0	0.85
NCRIBEN-02M	3.0	26.4	45.0	0.92
NCRIBEN-03L	2.6	30.0	40.0	1.23
Yandev 55	2.5	29.1	40.0	1.11
Ex-Sudan	3.0	27.6	50.0	1.21
Lsd (5%)	0.31	0.43	2.38	ns

Source: Olowe and Adeniregun, 2010

Table 3: Grain yield and 1000 seed weight of sesame var. E-8 subjected to different post harvest procedure

Treatment	Description	Grain yield	1000 seed weight
		(kg/ha)	(g)
T1 (Control)	Plants threshed once at 1 WAH	261.0	2.8
Т2	Plants threshed twice at 1 and 2 WAH	311.0	2.7
Т3	Plants threshed twice at 1, 2 and 3 WAH	ł 499.7	3.1
Т4	Plants threshed twice at 3 and 4 WAH	861.3	3.3
T5	Plants threshed twice at 4 and 5 WAH	511.0	3.6
LSD (5%)		181.42	0.14

WAH – Weeks After Harvest Source: Olowe and Adeniregun, 2011

- Soybean is one of the world's most cultivated oilseed crops.
- Nigeria ranks 2nd after South Africa in Africa and 14th in the world.
- Soybean grain yield has been stagnant in Nigeria in the last five years.
- Soybean world average yield is 2791.4 kg/ha
- Soybean African average is 1379.0 kg/ha
- Soybean Nigerian average is 973.3 kg/ha (FAOSTAT, 2018)
- Some of the production constraints include sowing at suboptimal population, inappropriate fertilizer regime and post harvest handling methods.

Fable 4: Summary of research findings on soybean experiments

	CONTRIBUTIONS	REFERENCES
	Description of growth and development of newly released	Olowe and Alofe, 1991a
	soybean varieties under varying row spacing in the forest	& 1991b
	ecology	
	The determinate types with shorter plant height were better	Olowe and Alofe, 1992
	adapted to the narrow (45 cm) - medium (60 cm) inter row	
6	spacing. Row spacing of 60 cm was recommended for soybean	
	under sole and intercropping.	
	Two of the varieties (TGx 1448-2E and TGx 1440-1E) of soybean	Olowe and Onyenali,
	were identified among 16 entries based on their response to	2015
	organic fertilizer application	
	Application of organic fertilizers: Aleshinlove Grade B (abattoir	Onvenali et al., 2020
	waste-based). Organo Farm (brewerv waste-based) and	,
	Gateway (animal dung and wood ash-based) significantly (P <	
	0.05: F test) increased agronomic performance of soybeans and	
INNENTAL IESEARCH	oil and protein content relative to the control.	22

Table 5. Effect of organic fertilizer application on soybean seed yield and quality in 2015 and 2016

Treatment	2015				2	016
	Protein content (%)	oil (kg/ha	Seed yield a)	Protein content (%)	oil	Seed yield (kg/ha)
Control	35.1	16.5	997.90	37.9	16.9	1444.45
Aleshinloye	36.9	17.6	1595.68	36.2	17.3	1577.78
Organo Farm	37.2	17.0	1446.57	35.6	17.1	1794.43
Gateway	37.4	17.6	1318.67	36.8	17.4	1683.33
LSD 5%	0.22	0.02	281.65	0.19	0.28	ns

Source: Onyenali et al., 2020

SUNFLOWER PRODUCTION RESEARCH

- Sunflower is a relatively new crop in the forest – savanna transition of Nigeria.
- Its production is low and yet to be captured by FAOSTAT.
- Production constraints addressed included fertilizer requirements and regime, optimum plant population and agronomic performance in mixtures.

Table 6: Summary of research findings on sunflower experiments

CONTRACT OF A		
	CONTRIBUTIONS	REFERENCE
	Application of $N_{60}P_{30}$ was adequate for sunflower production in the forest-sayannah transition zone of South West Nigeria	Olowe <i>et al.</i> , 2005a
	Single application of both nutrients at 21 days after sowing (DAS) is appropriate for optimum productivity of sunflower in terms of seed quality (protein and oil content) and seed yield in the forest-savannah transition zone for local (Funtua) and two exotic (Record and Issanka) and four recently released sunflower varieties (SAMSUN 1, SAMSUN 2,	Olowe <i>et al.</i> , 2005b; Akpojotor <i>et al.</i> , 2019
	SAMSUN 3 and SAMSUN 4).	Olowe 2005a
	from 37,500 to 55,000 to 111,000 plants per hectare.	010110, 20000
	The performance of the three test varieties irrespective of their seed source was satisfactory because their seed yield values compared well with African and world averages.	Olowe <i>et al.</i> , 2013
TRITE, DIVIBIONMENTAL KULTURAL RESEARCH	Sunflower could be sown in the forest–savannah transition zone in early July to second and third week in August.	Oshundiya <i>et al.</i> , 2014

Table 7. Sunflower seed yield and quality as influenced by fertilizer regime in 2014 and 2015

Treatment		2014	Ļ	2	015	
	Protein content (%)	Oil	Seed yield (kg/ha)	Protein content (%)	Oil	Seed yield (kg/ha)
Control	15.3	27.2	1246.9	18.0	26.6	361.9
Split	21.1	27.8	1650.4	18.3	27.8	704.9
Single	16.7	28.4	1994.2	19.7	28.3	597.0
LSD (5%)	0.08	0.33	425.94	0.21	0.17	126.67

Source: Akpojotor et al., 2019

SINGLE HEAD VS MULTIPLE HEADS

The fear of farmers that small seeds usually predominant on multiple heads can rarely produce the same crop as large seeds on single heads has finally been allayed (Olowe et al., 2013).

Table 8. Effects of plant population density on seed yield and some yield attributes of sunflower in 2002 and 2003

Treatment		2002			2003		
	Head wt. (g)	Achene number per head	Seed yield (t/ha)	Head wt. (g)	Achene number per head	Seed yield (t/ha)	
Population/ha							
111,000	77.2	679.0	3.0	47.8	330	2.8	
57,500	90.5	709.0	2.2	47.7	370	1.6	
37,500	91.9	619.0	1.8	62.3	485	1.4	
LSD (5%)	ns	ns	0.39	8.98	49.68	0.19	

Source: Olowe, 2005a

28

Table 9. Seed yield and oil content of three sunflower varieties grown from seeds of single and multiple headed plants

Variety	Seed source	Seed (kg/	yield ha)	Percent oi content (%	
		2004	2005	2004	
Record	Single	1201.0	1252.0	42.9	
	Multiple	833.0	860.0	42.6	
Issanka	Singe	1388.0	1202.0	48.3	
	Multiple	1221.0	1036.0	49.4	
Funtua	Single	1392.0	1019.0	45.7	
	Multiple	1956.0	1499.0	44.5	
SED(4d.f)		67.81	63.48	0.67	
SED(10d.f)		98.88	91.10	1.14	

Source: Olowe et al., 2013

MIXTURE PRODUCTIVITY STUDIES

After demonstrating the production potentials of these oilseeds under sole cropping in the forestsavannah transition zone which is outside their traditional growing areas, the next stage of our studies was to explore their potential in association with other crops (cassava, maize, cowpea etc) already established and adapted to the zone and also in mixtures involving other oilseeds.

SESAME, SOYBEANS AND SUNFLOWER IN **MIXTURES**

E OF FOOD SECURITY, ENVIRONM

31

MIXTURE PRODUCTIVITY RESULTS

- Intercropping simply means growing two or more crops at the same time on a single field and it is an ancient practice still widely used in the developing countries of the world.
- Our studies evaluated competitive behavior and performance of component oilseed crops in different intercropping systems.
- Component crops exhibit contrasting growth habits

Sesame/Soybean intercropping at Ogbomoso, Oyo State

Table 9: Summary of research findings on mixtureproductivity experiments

	CONTRIBUTIONS	REFERENCES
	MAIZE + SESAME + SOYBEANS in 1998 and 1999	Olowe et al., 2003b
	Maize + soybeans (100% population) and maize + sesame (75% population) recorded	
	the highest values of Land Equivalent Ratio (LER), grain yield and maize equivalent	
	yield.	
	SESAME (3 Var.) + SUNFLOWER (3 Var.) in 2002 and 2003	
119	It was concluded that growers can successfully cultivate the other two sesame varieties	Olowe <i>et a</i> l., 2005b
	(530-6-1 and PBTil) along with E-8 under intercropping with sunflower in the humid	
	forest-savannah transition zone.	
	The mixtures of these varieties were very remunerative in terms of ROI in 2002 and	
	2003.	Olowe, 2006
	Based on competitive ratio values, E8 demonstrated the greatest ability to compensate	
	for intercrop competition with taller sunflower varieties in 2002 and 2003.	Olowe and
		Adeyemo, 2009
	SOYBEAN + COWPEA + SUNFLOWER in 2002 and 2003	
	Intercropping of soybeans and cowpea with sunflower at V10 and simultaneously (SS)	Olowe et al., 2006
O SECURITY ENVIRONMENTAL	at planting resulted in the highest Monetary Equivalent Ratio (MER) and Sunflower	22
AGRICULTURAL RESEARCH	Yield Equivalent (SYE).	55

Table 10. Land Equivalent Ratio (LER) and Competitive Ratio (CR) of sesame/sunflower intercropping in 2002 and 2003

Intercropping	2002				2003	
System	LER	CR		LER	CR	
		Sesame	e sunflow	er	sesame	sunflower
Sesame/sunflower						
E-8/Sunflower	1.37	0.56	0.40	1.13	1.53	0.18
530-6-1/Sunflower	1.46	0.43	0.55	1.32	0.79	0.31
PBTil/Sunflower	1.22	0.48	0.43	1.35	0.69	0.37
F ratio	2.73 ^b	0.90 ^a	1.11 ^a	2.86 ^a	18.36 ^b	3.68 ^a
SE <u>+</u> (16d.f.)	0.042	0.226	0.246	0.044	0.034	0.046

^a - Significant at 1% probability level, ^b - Significant at 5% probability level

Source: Olowe and Adeyemo, 2009

Table 11. Effect of intercropping on Land Equivalent Ratio and Grain yield of soybeans and sunflower varieties (mean of 2001 and 2002)

Intercrop	LER	Soybean grain yield (kg/ha)
TGx 1448-2E/Isaanka	1.47	1043.0
TGx 1448-2E/Record	1.04	565.0
TGx1448-2E/Funtua	1.13	630.0
TGx 1440-1E/Isaanka	0.95	665.0
TGx 1440-1E/Record	1.58	1081.0
TGx 1440-1E/Funtua	1.15	537.0
LSD 5%	0.05	335.40

Source: Olowe and Adebimpe, 2009

Table 12: Summary of research findings on mixtureproductivity experiments contd

	CONTRIBUTIONS	REFERENCES	
	SUNFLOWER (3 Var.) + SOYBEANS (5 Var.) in 2001 & 2002	Olowe and	
	It was concluded that the combinations of TGx 1448-2E/Isaanka and TGx	Adebimpe, 2009	
	1440-1E/Record be used to improve yields of vegetable oilseeds in Abeokuta.		
	Key yield attributes like number and weight of seeds and pods per plant were		
	positively related to grain yield of soybeans.		
	CASSAVA + SESAME + SUNFLOWER in 2003/2004		
	Based on MAI and CYE, TME 1/Ses/Sun, TMS 30572/Ses/Sun and TMS	Adekunle <i>et al.</i> ,	
	30572/Sun were the three most economically efficient cropping systems,	2014	
	especially in the late planting season and were recommended to prospective		
	growers for cultivation, economic empowerment, and reduction of household		
	food insecurity		
	SESAME (2 Var.) + SUNFLOWER in 2018 & 2019	Somefun et al.,	
	It was concluded that the mixtures of both sesame varieties with sunflower	2020	
	introduced simultaneously and at 10 DAS with organic fertilizer applied are		
osecirit, dividiomental Acercultural research ERAR	suitable for cultivation under humid tropical conditions. Organic fertilizer	36	
	application also enhanced the yield attributes of both crops.		

CROP ROTATION RESEARCH

Table 13: Summary of research findingson five year crop rotation trial

CONTRIBUTIONS

REFERENCES

SOYBEAN + SESAME + SUNFLOWER + MAIZE (2008 – 2012)

Our findings confirmed the huge potential of crop rotation in the management of soil fertility under organic production systems in the tropics because the grain yield values of soybeans (623.0 – 2758.3 kg ha-1) recorded compared favorably with the African (1,379 kg ha⁻¹) and world (2,854 kg ha⁻¹) averages (FAO, 2018)

Olowe and Adejuyigbe, 2020

Table 14: Grain yield (2008 – 2012) and some yield attributes of soybeans (2012) under three cropping system

	ropping System Number per plant			Weight per plant (g)		Grain yield (kg.ha ⁻¹)					
	branch	es seed	s pods	pods	seeds	2008	2009	2010	2011	2012	Mean
Continuous	2.9	156.8	78.5	21.3	11.8	1822.4	623.0	1343.8	1269.3	1893.3	1390.4
Rotational	4.9	317.3	132.8	34.0	19.5	1822.4	1029.0	2758.3	2445.0	2711.7	2153.3
Conventiona	al 3.2	163.9	75.7	25.0	13.8	2004.0	1771.5	2556.3	1733.0	1913.2	1995.6
LSD (0.05)	0.59	74.03	22.16	ns	ns	ns	481.1	ns	415.60	556.12	511.79

ns – not significant

Organic agriculture is a production system that sustains the health of soils, ecosystems and people.

It relies on ecological processes, biodiversity and cycles adapted to local conditions, rather than the use of inputs with adverse effects.

Organic agriculture combines tradition, innovation and science to benefit the shared environment and promote fair relationships and a good quality of life for all involved.

International Federation of Organic Agriculture Movements (March 2005; ttps://www.ifoam.bio/en/organiclandm arks/definition-organic-agriculture)

WITHOUT ORGANIC FERT. WITH ORGANIC FERT.

Table 15: Summary of research findings on organic agriculture experiments

CONTRIBUTIONSREFERENCESIdentification of Skills Gap in some selectedAiyelaagbe et al., 2016Higher Educational Institutions (HEIs) inHigher Educational Institutions (HEIs) inNigeria.Higher Educational Institution (HEIs) in

Several of our studies on the development of appropriate agronomic practices for some oilseed crops under organic production system and how to use sustainable systems of cultivation have been highlighted in this lecture.

Olowe and Adebimpe, 2009; Olowe *et al.*, 2009; Adekunle *et al.*, 2014; Oshundiya *et al.*, 2014; Onyenali *et al.*, 2020; Olowe and Adejuyigbe, 2020; Olowe 2021.

Organic 1.0

The first phase was initiated by pioneers

Sir Albert Howard Lady Eve Balfour

Rudolf Steiner

Rachel Carson

J I Rodale

41

 The introduction of standards and 3rd party certification systems along with government regulations

STITUTE OF FOOD SECURITY, ENVIRONMENTA SOURCES AND AGRICULTURAL RESEARC

PROPONENTS OF ORGANIC 3.0

This is the third phase of the global organic movement

FIGURE 1 Widespread Conversion Development Towards True Sustainability Inclusiveness

CONCLUSIONS

□ Based on our findings on oilseed crop research in the last two to three decades, we have been able to demonstrate that soybeans, sesame and sunflower have huge agro-climatic production potential in the forest savanna transition ecology which is outside the savanna traditional growing region for the crops.

□ The oilseeds produce very comparable and high quality grain yields when cultivated during the late cropping season

□ We have developed appropriate agronomic practices such as optimum sowing date (Early to Mid July) and spacing (60 x 5 - 10cm) for sesame and soybeans, fertilizer regime (single application of 60 kgN/ha, 56kg P₂O₅ and 60kg K₂O/ha) and spacing (60 x 30cm) for sunflower.

We have also generated information on the efficacy of various locally produced and available organic amendments for enhancement of soil fertility and productivity of the crops in sole or compatible mixtures under organic production systems for soybeans, sesame and sunflower in this region.

□ The current production levels of these minor oilseeds with huge production potential must be increased in order to drive the growth of the vegetable oil sector going forward.

RECOMMENDATIONS

1. There is the urgent need to bridge the big gap between researchers and farmers if the developed technologies must get to the end-users. I recommend inclusion of farmers from the very beginning when a research topic is being conceived and planned for execution because the small to medium scale farmers produce about 90% of the food we consume in tropical Africa.

2. All the National Agricultural Research Institutes (NARIs) should be adequately funded to have a full complement of the value chains of their mandate crops. More funds should be allocated.

4. Synergy between the NARIs and the Colleges/Faculties of Agriculture in the specialized and conventional universities should be strengthened.

5. Gainful employment of agriculture graduates by government and private bodies across the value chain will help drive the much-anticipated revolution in agriculture.

6. The various agencies saddled with the responsibilities to implement food and agricultural policies should be well-empowered and motivated.

7. If the well-articulated policies in agriculture must have any meaningful impact on the productivity of the agriculture sector of the economy, then the focus must shift a little from production to enhancing value addition across the facets of the value chain for all commodities.

TITUTE OF FOOD SECURITY, ENVIRONMENTA

SESAME SNACKS MADE FROM SEEDS AND LEAVES

8. There should be a very strong synergy between policies, programmes, projects and frameworks at regional and national levels to enable all these strategies work.

9. The society must reduce gender inequality and recognize the contribution of women (>80.0%) to agricultural food production.

10. Mechanization of the basic agronomic practices such as planting, tilling and harvesting of the oilseed crops should be pursued vigorously in order to reduce drudgery and improve technical competence of the workforce.

TE OF FOOD SECURITY, ENVIR

MECHANISED SESAME PRODUCTION

KENTLL.

INSTITUTE OF FOOD SECURITY, ENVIRONMENTAL RESOURCES AND AGRICULTURAL RESEARCH

FGN 2019 CANTAL PRIJECT

SEED PROCESSING MACHINE

12. Training of the local farmers that produce about 80% of the oilseeds consumed in Nigeria is strongly advocated because these people are still using outdated manual harvesting techniques.

13. There is the need to invest massively in order to increase the total cropland under irrigation (presently 1%) and thereby transform the Nigerian economy from rain fed to grower led. Irrigation can provide the boost that the Nigerian economy needs to make the leap from rain-fed to grower-led.

14. Since organic agriculture is now recognized as the fastest growing sector of agriculture globally, Nigeria should take advantage of this opportunity by facilitating the mainstreaming of organic agriculture into the curricula of education at various relevant levels in the country.

ACKNOWLEDGEMENTS

THE OLOWES

Deaconess G. O. Bajomo, Deaconess V. O. Akindele, **Deaconess M. Hirse,** Deaconess B. T. Abudu, Elder C. T. Olowe, Mrs. G. K. Sehindemi P/El. V.I Olowe and Deaconess G. B. Laditan.

GRADUATE SUPERVISORS

LATE DOSENT ANATOLI SHIBAROVSKI MSc. AGRONOMY (1983) DEPARTMENT OF IRRIGATION UNIVERSITY OF AGRICULTURE, KRASNODAR, RUSSIA

LATE PROF. CLEMENT OLUWOLE ALOFE Ph.D PLANT SCIENCE (1989) DEPARTMENT OF PLANT SCIENCE OBAFEMI AWOLOWO UNIVERSITY, ILE IFE

OILSEED RESEARCH GROUP

From the left

Dr. A.A Soretire (SSLM) , Prof. V.I.O Olowe (IFSERAR), Prof. O.A. Ekinuomehin (CPT) , Prof. C.O Adejuyigbe (SSLM)

COLPLANT FAMILY

My sincere appreciation goes to all the past Deans and the present Dean (Prof. M.O. Atayese) of COLPLANT.

My close colleagues in the College, Profs. P. O. Adetiloye, F. O. Olasantan, O. J. Ariyo, J. A. Adigun, J. G. Bodunde, O. A. Enikuomehin, M. O. Atayese, A. A. Oyekanmi (my HOD, PPCP), I.O.O Aiyelaagbe, S. O. Adigbo, Tom Fabunmi, J.J. Atungwu and Dr. S.O Sakariyawo just to mention a few.

All the other Professors, teaching and non-teaching staff in the College are highly appreciated.

College of Plant Science & Grop Production (COLPLANT)

LATE PROF. P. A OKUNEYE (COLAMRUD) LATE PROF. I. F ADU (COLANIM) LATE PROF. K. A OKELEYE (COLPLANT)

SPECIAL TRIBUTES

ISOFAR WORLD BOARD MEMBERS (2014-2017 and 2017-2022)

Prof. Dr. Gerold Rahmann (Germany), Dr. Jessica Shade (USA), Prof. Dr. M. Reza Ardakani (Iran), Dr. Anne-Kristin Loes (Norway), Prof. Dr. Raffaele Zanoli (Italy), Dr. Mahesh Chander (India), **Prof. Victor Olowe (Nigeria)**, Prof. Dr. Khaled Sassi (Tunisia), Dr. Jaakko Nuutila (Finland), Prof. Dr. Daniel Neuhoff (Germany), Dr. Khalid Azim (Morocco) and Prof. Dr. Ewa Rembioalkowaska (Poland).

ORGANIC AGRICULTURE PROFESSIONALS IN TERTIARY INSTITUTIONS IN NIGERIA

(2005-TO-DATE)

ASSOCIATION OF ORGANIC AGRICULTURE PRACTITIONERS **OF NIGERIA** (NOAN) (2009- TO DATE)

ITE OF FOOD SECURITY, ENVIRONME

INSTITUTE OF FOOD SECURITY, ENVIRONMENTAL RESOURCES AND AGRICULTURAL RESEARCH (IFSERAR)

SPECIAL APPRECIATIONS

- > ALL MY GRADUATE AND UNDERGRADUATE STUDENTS
- ≻E-75 SET OF EKO BOYS' HIGH SCHOOL, LAGOS
- >LANDLORDS IN ELITE ESTATE, GBONAGUN, ABEOKUTA & GBONOGUN CENTRAL.

> MEMBERS OF THE APOSTOLIC CHURCH NIGERIA, PANSEKE DISTRICT, IGBORE AREA.

NUCLEOUS FAMILY

Deaconess Rebecca Olawunmi Olowe

ITUTE OF FOOD SECURITY, ENVIRONMENTA

Emannuel IbukunOluwa Olowe , Timothy AyoOluwa Olowe & Nehemiah AnjolaOluwa Olowe 67

FOR

INSTITUTE OF FOOD SECURITY, ENVIRONMENTAL RESOURCES AND AGRICULTURAL RESEARCH

